A State and Parameter Identification Scheme for Linearly Parameterized Systems
نویسندگان
چکیده
Abstract This paper presents an adaptive algorithm to estimate states and unknown parameters simultaneously for nonlinear time invariant systems which depend affinely on the unknown parameters. The system output signals are filtered and re-parameterized into a regression form from which the least squares error scheme is applied to identify the unknown parameters. The states are then estimated by an observer based on the estimated parameters. The major difference between this algorithm and existing adaptive observer algorithms is that the proposed algorithm does not require any special canonical forms or rank conditions. However, an output measurement condition is imposed. The stability and performance limit of this scheme are analyzed. Two examples are then presented to show the effectiveness of the proposed schemes.
منابع مشابه
Fuzzy adaptive tracking control for a class of nonlinearly parameterized systems with unknown control directions
This paper addresses the problem of adaptive fuzzy tracking control for aclass of nonlinearly parameterized systems with unknown control directions.In this paper, the nonlinearly parameterized functions are lumped into the unknown continuous functionswhich can be approximated by using the fuzzy logic systems (FLS) in Mamdani type. Then, the Nussbaum-type function is used to de...
متن کاملADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF PERTURBED NONLINEARLY PARAMETERIZED SYSTEMS USING MINIMAL LEARNING PARAMETERS ALGORITHM
In this paper, an adaptive fuzzy tracking control approach is proposed for a class of single-inputsingle-output (SISO) nonlinear systems in which the unknown continuous functions may be nonlinearlyparameterized. During the controller design procedure, the fuzzy logic systems (FLS) in Mamdani type are applied to approximate the unknown continuous functions, and then, based on the minimal learnin...
متن کاملObservability and Local Observer Construction for Unknown Parameters in Linearly and Nonlinearly Parameterized Systems
Using geometric concepts from observability theory for nonlinear systems, we propose an approach for parameter estimation for linearly and nonlinearly parameterized systems. The proposed approach relies on extending a parameter estimation problem to a state estimation problem by introducing the parameters as auxiliary state variables. Applying tools from geometric nonlinear control theory we es...
متن کاملIdentification and Control of MIMO Systems with State Time Delay (Short Communication)
Time-delay identification is one of the most important parameters in designing controllers. In the cases where the number of inputs and outputs in a system are more than one, this identification is of great concern. In this paper, a novel autocorrelation-based scheme for the state variable time-delay identification for multi-input multi-output (MIMO) system has been presented. This method is ba...
متن کاملState and Parameter Estimation for Systems in Non-Canonical Adaptive Observer Form
We consider the problem of state and parameter reconstruction for uncertain dynamical systems that cannot be transformed into the canonical adaptive observer form. The uncertainties are allowed to be both linearly and nonlinearly parameterized functions of state and time. We provide a technique that allows successful reconstruction of uncertain state and parameters for a broad range of dynamica...
متن کامل